大型语言模型 (LLM) 在自然语言处理 (NLP) 领域取得了显著进展,使其在文本生成、摘要和问答等应用中大放异彩。然而,LLM 对令牌级处理(一次预测一个词)的依赖也带来了一些挑战。这种方法与人类的交流方式形成对比,后者通常在更高层次的抽象层面运作,例如句子或想法。



大型语言模型 (LLM) 在自然语言处理 (NLP) 领域取得了显著进展,使其在文本生成、摘要和问答等应用中大放异彩。然而,LLM 对令牌级处理(一次预测一个词)的依赖也带来了一些挑战。这种方法与人类的交流方式形成对比,后者通常在更高层次的抽象层面运作,例如句子或想法。


日本数据科学家本田崇人推出开源编程语言“Sui”,旨在解决大语言模型生成代码的准确性问题,宣称可实现100%准确率。其设计理念源于日本美学“粋”,强调精炼与去除冗余,核心原则包括保证零语法错误率,并使用数字作为变量。
南洋理工大学推出首个全面评测大型语言模型处理电子病历能力的基准EHRStruct,涵盖11项核心任务、2200个样本,旨在评估模型在医疗数据理解、信息提取等方面的表现,推动医疗AI发展。
MIT研究团队开发出实例自适应缩放技术,可根据问题复杂度动态调整大型语言模型的计算资源,提升效率并降低能耗。该研究获多家机构支持,相关论文已于11月初发布。
欧盟委员会对Meta启动反垄断调查,质疑其WhatsApp Business API新政仅允许自家Meta AI接入,禁止ChatGPT等第三方AI聊天机器人使用,涉嫌滥用市场支配地位。新政规定2025年10月起禁止第三方AI聊天机器人调用API,2026年1月15日前已集成服务必须退出,豁免范围未明确。
OpenAI推出“忏悔”框架,训练AI模型主动承认不当行为或问题决策,旨在解决大语言模型因追求“符合预期”而可能产生虚假陈述的问题。该框架引导模型在给出主要答案后进行二次回应,详细说明其推理过程。